Exact Probability Distributions of Selected Species in Stochastic Chemical Reaction Networks
نویسندگان
چکیده
Chemical reactions are discrete, stochastic events. As such, the species' molecular numbers can be described by an associated master equation. However, handling such an equation may become difficult due to the large size of reaction networks. A commonly used approach to forecast the behaviour of reaction networks is to perform computational simulations of such systems and analyse their outcome statistically. This approach, however, might require high computational costs to provide accurate results. In this paper we opt for an analytical approach to obtain the time-dependent solution of the Chemical Master Equation for selected species in a general reaction network. When the reaction networks are composed exclusively of zeroth and first-order reactions, this analytical approach significantly alleviates the computational burden required by simulation-based methods. By building upon these analytical solutions, we analyse a general monomolecular reaction network with an arbitrary number of species to obtain the exact marginal probability distribution for selected species. Additionally, we study two particular topologies of monomolecular reaction networks, namely (i) an unbranched chain of monomolecular reactions with and without synthesis and degradation reactions and (ii) a circular chain of monomolecular reactions. We illustrate our methodology and alternative ways to use it for non-linear systems by analysing a protein autoactivation mechanism. Later, we compare the computational load required for the implementation of our results and a pure computational approach to analyse an unbranched chain of monomolecular reactions. Finally, we study calcium ions gates in the sarco/endoplasmic reticulum mediated by ryanodine receptors.
منابع مشابه
Adaptive hybrid simulations for multiscale stochastic reaction networks.
The probability distribution describing the state of a Stochastic Reaction Network (SRN) evolves according to the Chemical Master Equation (CME). It is common to estimate its solution using Monte Carlo methods such as the Stochastic Simulation Algorithm (SSA). In many cases, these simulations can take an impractical amount of computational time. Therefore, many methods have been developed that ...
متن کاملA Benders' Decomposition Method to Solve Stochastic Distribution Network Design Problem with Two Echelons and Inter-Depot Transportation
In many practical distribution networks, managers face significant uncertainties in demand, local price of building facilities, transportation cost, and macro and microeconomic parameters. This paper addresses design of distribution networks in a supply chain system which optimizes the performance of distribution networks subject to required service level. This service level, which is consider...
متن کاملRegularized maximum likelihood estimation of sparse stochastic monomolecular biochemical reaction networks
A sparse parameter estimation method is proposed for identifying a stochastic monomolecular biochemical reaction network system. Identification of a reaction network can be achieved by estimating a sparse parameter matrix containing the reaction network structure and kinetics information. Stochastic dynamics of a biochemical reaction network system is usually modeled by a chemical master equati...
متن کاملStochastic Comparisons of Probability Distribution Functions with Experimental Data in a Liquid-Liquid Extraction Column for Determination of Drop Size Distributions
The droplet size distribution in the column is usually represented as the average volume to surface area, known as the Sauter mean drop diameter. It is a key variable in the extraction column design. A study of the drop size distribution and Sauter-mean drop diameter for a liquid-liquid extraction column has been presented for a range of operating conditions and three different liquid-liquid sy...
متن کاملA new class of highly efficient exact stochastic simulation algorithms for chemical reaction networks.
We introduce an alternative formulation of the exact stochastic simulation algorithm (SSA) for sampling trajectories of the chemical master equation for a well-stirred system of coupled chemical reactions. Our formulation is based on factored-out, partial reaction propensities. This novel exact SSA, called the partial-propensity direct method (PDM), is highly efficient and has a computational c...
متن کامل